A Soft Computing Based Approach for Multi-Accent Classification in IVR Systems
نویسنده
چکیده
A speaker’s accent is the most important factor affecting the performance of Natural Language Call Routing (NLCR) systems because accents vary widely, even within the same country or community. This variation also occurs when nonnative speakers start to learn a second language, the substitution of native language phonology being a common process. Such substitution leads to fuzziness between the phoneme boundaries and phoneme classes, which reduces out-of-class variations, and increases the similarities between the different sets of phonemes. Thus, this fuzziness is the main cause of reduced NLCR system performance. The main requirement for commercial enterprises using an NLCR system is to have a robust NLCR system that provides call understanding and routing to appropriate destinations. The chief motivation for this present work is to develop an NLCR system that eliminates multilayered menus and employs a sophisticated speaker accent-based automated voice response system around the clock. Currently, NLCRs are not fully equipped with accent classification capability. Our main objective is to develop both speaker-independent and speaker-dependent accent classification systems that understand a caller’s query, classify the caller’s accent, and route the call to the acoustic model that has been thoroughly trained on a database of speech utterances recorded by such speakers. In the field of accent classification, the dominant approaches are the Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM). Of the two, GMM is the most widely implemented for accent classification. However, GMM performance depends on the initial partitions and number of Gaussian mixtures, both of which can reduce performance if poorly chosen. To overcome these shortcomings, we propose a speaker-independent accent classification system based on a distance metric learning approach and evolution strategy. This approach depends on side information from dissimilar pairs of accent groups to transfer data points to a new feature space where the Euclidean distances between similar and dissimilar points are at their minimum and maximum, respectively. Finally, a Non-dominated Sorting Evolution Strategy (NSES)-based
منابع مشابه
TRANSPORT ROUTE PLANNING MODELS BASED ON FUZZY APPROACH
Transport route planning is one of the most important and frequent activities in supply chain management. The design of information systems for route planning in real contexts faces two relevant challenges: the complexity of the planning and the lack of complete and precise information. The purpose of this paper is to nd methods for the development of transport route planning in uncertainty dec...
متن کاملSoft Computing Based on a Modified MCDM Approach under Intuitionistic Fuzzy Sets
The current study set to extend a new VIKOR method as a compromise ranking approach to solve multiple criteria decision-making (MCDM) problems through intuitionistic fuzzy analysis. Using compromise method in MCDM problems contributes to the selection of an alternative as close as possible to the positive ideal solution and far away from the negative ideal solution, concurrently. Using Atanasso...
متن کاملCOMBINING FUZZY QUANTIFIERS AND NEAT OPERATORS FOR SOFT COMPUTING
This paper will introduce a new method to obtain the order weightsof the Ordered Weighted Averaging (OWA) operator. We will first show therelation between fuzzy quantifiers and neat OWA operators and then offer anew combination of them. Fuzzy quantifiers are applied for soft computingin modeling the optimism degree of the decision maker. In using neat operators,the ordering of the inputs is not...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملAn approach to fault detection and correction in design of systems using of Turbo codes
We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...
متن کامل